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Administrivia

- ChatGPT is a great tool to help debug your code, give you ideas about 
things to try, etc. https://chat.openai.com/

- It doesn’t get everything right, but it’s very useful.
- The paid version is useful, but somewhat expensive ($20 (R358))

- Form: https://forms.gle/RZHWxhbBBMes7yPx8

2

https://chat.openai.com/
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Deep learning glossaries

1. Google
2. WildML
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https://developers.google.com/machine-learning/glossary
http://www.wildml.com/deep-learning-glossary/


First, recap from last class

Conceptually, a NN has three components.

In each node we just make simple multiplications 
and sums, and multiply it by an activation function
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First, recap from last class

Conceptually, a NN has three components.

- The network structure
- A loss function 
- An optimizer

In each node we just make simple multiplications 
and sums, and multiply it by an activation function
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What is a neural net?

A neural net is composed of 3 things:

The network 
structure
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The loss function The optimizer

https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f

https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6
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Perceptrons
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Perceptrons

◎ Let’s put this all together
◎ Our first network will be a single neuron that will learn a simple function

Observations
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X1 X2 y

0 0 0

0 1 1

1 0 1

1 1 1
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Perceptrons

◎ How do we make a prediction for each observation?

Observations

14

X1 X2 y

0 0 0

0 1 1

1 0 1

1 1 1w1 w2 b

1 -1 -0.5

Assume the following values:

22



Predictions

◎ For the first observation,
◎ First compute the weighted sum:
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X1 X2 y

0 0 0

0 1 1

1 0 1

1 1 1w1 w2 b

1 -1 -0.5

Assume the following values:

Observations



Predictions

◎ For the first observation,
◎ First compute the weighted sum:                   Transform to a probability:
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w1 w2 b

1 -1 -0.5

Assume the following values: *Note we are doing binary 
classification so we use the 
sigmoid activation function to 
calculate p



Predictions

◎ For the first observation,
◎ First compute the weighted sum:                   Transform to a probability:
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w1 w2 b

1 -1 -0.5

Assume the following values:
Round to get prediction:



Predictions
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X1 X2 y h p

0 0 0 -0.5 0.38 0

0 1 1

1 0 1

1 1 1

w1 w2 b

1 -1 -0.5

Assume the following values:

Complete the table:



Predictions
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X1 X2 y h p

0 0 0 -0.5 0.38 0

0 1 1 -1.5 0.18 0

1 0 1 0.5 0.38 0

1 1 1 -0.5 0.38 0

w1 w2 b

1 -1 -0.5

Assume the following values:

Complete the table:



Performance

◎ Our network isn’t so great
◎ How do we make it better?
◎ What does better mean?

○ Need to define a measure of performance
○ There are many ways

◎ Let’s begin with squared error:
◎ We need to find values for                     that make this error as small as 

possible.
◎ We need to learn values for                      such that the difference between 

the predicted and actual values is as small as possible.
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Learning From Data

How do we find the best values for                 ? 
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Learning From Data

How do we find the best values for                 ? 
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Learning From Data

How do we find the best values for                    ? 
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Learning From Data

◎ Recall that the derivative of a function tells you how it is 
changing at any given location.
○ If the derivative is positive, it means it’s going up
○ If the derivative is negative, it means it’s going down

◎ Strategy:
○ Start with initial values for 
○ Take partial derivatives of the loss function with respect to 
○ Subtract the derivative (also called the gradient) from each
○ This is known as gradient descent
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Gradient-Based Optimization
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Gradient-Based Optimization

◎ A point that obtains the absolute lowest value of f(x) is a global minimum
◎ There may be one global minimum or multiple global minima
◎ It is also possible for there to be local minima that are not globally optimal
◎ It is common in many settings to settle for a value f that is very low but not 

necessarily minimal
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Gradient-Based Optimization

◎ To minimize f, we would like to find the direction in which f decreases the fastest
◎ It can be shown that the gradient points directly uphill and the negative gradient 

directly downhill
◎ We can therefore decrease f by moving in the direction of the negative gradient 
◎ For example, for a weight

where         is the learning rate (how fast you want to move down the gradient), 
and       is the gradient 
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The Backpropagation Algorithm
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The Backpropagation Algorithm

◎ Our perceptron performs the following computations:

◎ We want to minimize this quantity:

◎ We’ll compute the gradients for each parameter by “backpropagating” 
errors through each component of the network
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The Backpropagation Algorithm

For         we need to compute

To get there we will use the 
chain rule 

This is “backprop”

Computations

Loss
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The Backpropagation Algorithm

Computations

Loss
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The Backpropagation Algorithm

Computations

Loss
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The Backpropagation Algorithm

Computations

Loss
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The Backpropagation Algorithm

Computations

Loss
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The Backpropagation Algorithm

Computations

Loss
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The Backpropagation Algorithm

Computations

Loss
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Putting it all together:



Gradient Descent with Backprop

For some number of iterations:

1. Compute the gradient for 
2. Update
3. Repeat until “convergence” 

Do this for each weight and bias term.
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Multilayer 
Perceptrons



Perceptron      MLP

We can turn our perceptron model into a multilayer perceptron

◎ Instead of just one linear combination, we are going to take several, 
each with a different set of weights 

◎ Each linear combination will be followed by a nonlinear activation
◎ Each of these nonlinear features will be fed into the logistic regression 

classifier (binary classifier)
◎ All of the weights are learned end-to-end via SGD

MLPs learn a set of nonlinear features directly from data - “feature 
engineering” is the hallmark of deep learning approaches
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Multilayer Perceptrons (MLPs)

Suppose we have the following MLP with 1 hidden layer that has 3 hidden 
units:

Each neuron in the hidden layer is going to do exactly the same thing as 
before.
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Multilayer Perceptrons (MLPs)

Computations:

Output layer weight derivatives Hidden layer weight derivatives
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*If we use a sigmoid activation function



Matrix Notation

Sum notation starts to get unwieldy quickly. We can use matrix notation to 
represent each calculation in a more concise way.
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Notation

As the number of layers grows, the number of matrices grows and we have to 
add a superscript to denote the layer. We also have to add a superscript to 
denote which training example we are referencing.

Example notation for 1 weight in 1 hidden layer for 1 training example:

43

Layer l
Training example i

Hidden neuron k

Input feature j



MLP Terminology

Forward pass = computing probability from input
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MLP Terminology

Forward pass = computing probability from input

Backward pass = computing derivatives from the output 
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MLP Terminology

Forward pass = computing probability from input

Backward pass = computing derivatives from the output 
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Hidden layers are also 
called “dense” layers or 
“fully connected” layers



MLPs

Increasing the number of layers increases the flexibility of the model - but run 
the risk of overfitting
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Conclusions

◎ Backprop, perceptrons, and MLPs are the building blocks of 
neural nets

◎ You’ll get a chance to demonstrate your mastery in Problem Set 1

◎ We will use these concepts for the rest of the semester
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This is where we left it last class
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Coding 
Neural Nets



Keras and Tensorflow

◎ Keras is a model-level library that provides high-level building blocks for 
developing deep learning models

◎ It doesn’t handle low-level operations like matrix and tensor (n-
dimensional matrix) multiplication and differentiation
○ It uses TensorFlow or Theano or CNTK (Microsoft Cognitive Toolkit) 

backends for this
○ We will be using TensorFlow

◉ It is the most widely adopted, scalable and production ready
◎ Keras can run on both CPUs and GPUs

○ When running on CPUs, uses Eigen for tensor operations
○ When running on GPUs, uses the NVIDIA CUDA Deep Neural Network 

library (cuDNN)
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Neural Network Workflow
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Generic Feedforward Network

Elements needed:

1. Necessary libraries
2. Dataset split into training and test sets (validation as well if you have enough 

data)
3. models.Sequential(): defines a linear, or sequential architecture made up 

of a set of layers that will stack to create the network
4. layers.Dense(): specifies a fully connected layer 
5. model.compile(optimizer, loss, metrics): specifies how to 

execute the training of the network
6. model.fit(train_data, train_labels, epochs, batch_size): 

fits the neural net using the training data, runs for a specified number of iterations 
(epochs) using batch_size number of training examples at a time
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Generic Feedforward Network
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Generic Feedforward Network

train_data: training examples (matrix of feature vectors; Xtrain)

train_labels: training labels (ytrain)

test_data: test examples used to measure performance of network (Xtest)

test_labels: test set labels  (ytest)

Optimizing algorithms: rmsprop, sgd, adagrad, adam, etc.

Loss function options: mse, mae, categorical_crossentropy, etc.

Performance measure options: accuracy, mae, etc.

Here:

c = the number of hidden units (neurons) in a hidden layer

d = the number of units (neurons) in the output layer

e = the number of epochs (iterations) over entire training data set

b = the batch size (how many training examples to optimize at once)
59
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MLPs in 
Python/Keras



MNIST Data Example

◎ The MNIST data set includes handwritten 
digits with corresponding labels

◎ Training set: 60,000 images of handwritten 
digits and corresponding labels
○ Each digit is represented as a 28 x 28 

matrix of grayscale values 0 - 255
○ The entire training set is stored in a 

3D tensor of shape (60000, 28, 28)
○ The corresponding image values are 

stored as a 1D tensor of values 0 - 9

◎ Testing set: 10,000 images with the same 
set up as the training set
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28 pixels

28 pixels

60,000 images

...

Training Data

http://yann.lecun.com/exdb/mnist/


MNIST Data Example

Data wrangling

◎ We’ll get into RGB images later, but for grayscale images, we need to first transform the matrix of 
values into a vector of values, and then normalize them to be between 0 and 1. It is not strictly 
necessary to normalize your inputs, but smaller numbers help speed up training and avoid 
getting stuck in local minima. This also ensures the gradients don’t “explode” or “vanish”
○ Reshape each image from a 28 x 28 matrix of grayscale values 0 - 255 to a vector of length 

28*28 = 784 of values 0 - 1 (divide each by 255)

◎ We now have 10 classes (categories; the digits 0-9) 
○ We need to have multiclass labels that tell the network which digit the example is
○ Reshape each corresponding image label to a vector of length 10 of values 0 or 1
○ Example: the digit 3 would be represented as [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
○ You can think of this as “dummy coding” the labels
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Activation and Loss Function Choices
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Task Last-layer activation Loss function

Binary classification sigmoid Binary cross-entropy

Multiclass, single-label 

classification

softmax Categorical cross-entropy

Multiclass, multilabel 

classification

sigmoid Binary cross-entropy

Regression to arbitrary 

values

None Mean square error (MSE)

Regression to values 

between 0 and 1

sigmoid MSE or binary cross-

entropy



Softmax function

◎ Softmax units are used as outputs when predicting a discrete variable y with j possible values

◎ In this setting, which can be seen as a generalization of the Bernoulli distribution, we need to 
produce a vector       with 

◎ We require that each       lie in the [0, 1] interval and that the entire vector sums to 1 

◎ We first compute                                    as usual

◎ Here,                                           represents an unnormalized log probability for class i

◎ The softmax function then exponentiates and normalizes z to obtain 
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Categorical cross-entropy

◎ In this case we want to maximize 

◎ The first term shows that the input always has a direct contribution to 

the loss function

◎ Because                                            , the negative log-likelihood loss function 

always strongly penalizes the most active incorrect prediction 
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MNIST Data Example

Network Architecture

◎ Let’s start with 2 layers:
○ Hidden layer will have 512 hidden units and the relu activation function

○ Output layer with 10 units (one for each possible digit) and the softmax activation function (this 
produces a vector of length 10, where each element is a probability between 0 and 1 of the image 
being classified as that digit)

○ Example: [0, 0.3, 0, 0, 0, 0, 0, 0.7, 0, 0] - the highest probability corresponds to a label of 7, so the 
network would classify this image as a 7

○ rmsprop optimization algorithm
○ categorical_crossentropy loss function
○ accuracy performance measure (the proportion of times the correct class is chosen)
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MNIST Data Example
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Colab link

Step 1

Step 2

https://colab.research.google.com/drive/1ocFr7rgT-_mmr1VY_vWxC-b3PSvwVzBu?usp=sharing
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