Data Science Initiative for
Africa (DSI-A) - Deep Learning

Lecture 2

MLPs, Backpropagation, and coding neural
networks in Python

Santiago Romero-Brufau
Harvard T.H. Chan School of Public Health
Spring 2

Administrivia

ChatGPT is a great tool to help debug your code, give you ideas about
things to try, etc. https://chat.openai.com/

It doesn’t get everything right, but it’s very useful.

The paid version is useful, but somewhat expensive (520 (R358))

Form: https://forms.gle/RZHWxhbBBMes7yPx8

https://chat.openai.com/
https://forms.gle/RZHWxhbBBMes7yPx8

:(% » Kareem Carr | Data Scientist @ ./), Kareem Carr | Data Scientist @ - 12h
‘ 9 The report doesn't directly discuss data
science roles but we can draw some
conclusions.

@kareem_carr

Is Data Science at risk of disruption by
ChatGPT? Covidiots everywhere (, 12h
=~ \Vhatabout software engineering. | am

‘ hearing GPT-4 has the capabilities to upend
Based on a recent report by OpenAl, | / it

conclude the risk is low. O () |1 581

-

P \ Kareem Carr | Data Scientist & - 12h
% High risk yes.

Data Science

Computer O) ™ ™) !\ | 495 |
Science ’ n .) N
i
V " .
X a % + Kareem Carr | Data Scientist &
oy >\ Y @kareem carr

Domain = Maths &
= Specialized
Expertise sutistis Statistics

Data sciences roles which tightly integrate
mathematics with critical thinking, scientific
analysis and subject matter knowledge are
likely to be much more resistant to disruption.

10:11 AM - 3/21/23 - 191K Views

10:11 AM - 3/21/23 - 2,897 Views

KareariiCart| Data Sclontist® Kareem Carr | Data Scientist & -1/5/23
@kareem carr It smuggles in some assumptions that

should perhaps be expressed in a much

People find the sentence "my artificial neural more explicit manner.

network is sentient" vastly more plausible

than the sentence "my matrix multiplication If | tell you that sentience is just this “+ with
algorithm is sentient" even though they are much bigger matrices, you should probably
roughly the same claim. be extremely skeptical.

This implies to me that "neural network" is
bad terminology.

[AI A, A;(] | = AB, + A,B, +A,B,

B

12:22 PM - 1/5/23 - 140K Views B
2
B

3

"Roughly" is carrying a *LOT* of water in that
statement. &

O1 a1 B ihi 2000 &,

a Bojan Tunguz & @tunguz-1/5/23

Can't say it better than this: twitter.com/
seanluomdphd/s...

@ Kareem Carr | Data Scientist & - 1/5/23

@ Sean X. Luo @seanluomd...-1/5/23
ReLU = sentience.

Q1 1 Qs i 2397 &,

Pabnau @pabnau-1/5/23

J I’ve mostly agreed with your tweets, but |
gotta push back here. You’re confusing the
part for the whole. Just because ANNs are
composed of matrix mults (and other
things), doesn’t mean they are equivalent.
ANNSs are non-linear, and recurrent versions
can simulate Turing machines

Q2 1 Q 32 ihi 2440 &,

Deep learning glossaries

Google
WildML

https://developers.google.com/machine-learning/glossary
http://www.wildml.com/deep-learning-glossary/

First, recap from last class

Conceptually, a NN has three components.

In each node we just make simple multiplications
and sums, and multiply it by an activation function

First, recap from last class

Conceptually, a NN has three components.

The network structure
A loss function
An optimizer

In each node we just make simple multiplications
and sums, and multiply it by an activation function

What Is a neural net?
A neural net is composed of 3 things:

The network The loss function The optimizer
structure

— suu
— Momentum
L —_—
L NAG
y % Adagrad
Y ';I -—— Adadelta
KL
P s J—
1 1 log(1) ik
—y; xlog(p;) — (1 — y;) * log(1 — p; ’ T
, A
A s
o ot
5%

—x:5

input layer hidden layer 1 hidden layer 2 output layer SGD optimization on saddle point

https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f

https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6 10

Perceptrons

T Now we add the blue and
orange curves together...

-/

12

Perceptrons

Let’s put this all together
Our first network will be a single neuron that will learn a simple function

b X1 X2 y
Observatic
X, W1 0 0 0
y
Xs w , 0 1 1
1 0 1
1 1 1

13

Perceptrons

How do we make a prediction for each observation?

Assume the following values:

wil

w2

1

-1

-0.5

Observatic

X1

X2

14

Predictions

For the first observation, X, =0,X,=0,y=0
First compute the weighted sum:
h=wy*X{+wy*xXo+Db

h=1x0+—-1x0+ (—0.5)
h = —-0.5

X1

Observations

X2

Assume the following values:

wl w2 b

1 -1 -0.5

15

Predictions

For the first observation, X; =0,X;=0,y=0

First compute the weighted sum: Transform to a probability:
_ 1
h=w*X{+wyxXo+b : P= Trom ()
h=1x0+—-1x0+ (—0.5) -)
b= 14+exp(—0.5)
h=—-0.5
p = 0.38
Assume the following values: "Note we are doing binary
classification so we use the
UL L b sigmoid activation function to
1 1 05 calculate p

16

Predictions

For the first observation, X; =0,X,=0,y=0

First compute the weighted sum: Transform to a probability:
h=w*X1+wy*xXo+Db [p:m
h=1x0+—-1x0+ (—0.5) B !

b= 14+exp(—0.5)
h = —-0.5
p=0.38

¢

Round to get prediction:

wl w2 b ¢ = round(p)
1 1 0.5

Assume the following values:

y=0
17

Predictions

h=w*X{+wyxXo+b

_ 1
b= 1+exp(—h)

¢ = round(p)

Assume the following values:

X1

Complete the table:

X2

y

h

-0.5

0.38

Nt

wl w2

1 -1

-0.5

18

Predictions

h=w*X{+wyxXo+b

_ 1
b= 1+exp(—h)

¢ = round(p)

Assume the following values:

Complete the table:
X1 X2 y h p 3’)
0 0 0 -0.5 0.38 0
0 1 1 -1.5 0.18 0
1 0 1 0.5 0.38 0
1 1 1 -0.5 0.38 0

wl w2

1 -1

-0.5

19

Performance

Our network isn’t so great

How do we make it better?

What does better mean?
Need to define a measure of performance
There are many ways

Let’s begin with squared error: (y — p)?
We need to find values for w;, wo, b that make this error as small as

possible.
We need to learn values for w;, wy, b such that the difference between

the predicted and actual values is as small as possible.

20

Learning From Data

How do we find the best values for wi,ws,b ?

21

Learning From Data

How do we find the best values for wi,ws,b ?

4 [fen]. 20fcn-F0190 Fzm g=ma=m X o e
A% g(y) 90T
%‘.- f = :_f- 4D - ()AB~(e)CP ‘f
/ y=mxsb, TN
ON ‘,‘“
SeS7

Pttt TR
vy | fio -t

(h%) =% SJ——h =lulxl+c smxdx ~ CosxAx ¢
-f 'y dx=f(C b-f @

o340
4xt-3%-1=0 4_><__|U
[fondx
D o.iICU US s
AR A de . O T B B
e e A

'I_ oy AT_@M ((T,-T) ,
B-dac b _AF-ta 4,\4- o\-X+—-'—M (,'X"'l‘\ 'fCK'?-h«))

Tl 4e s
[] ! SJ‘(M fo '"_ =Rl o)
y lev k’fY*Asr-Lvd')
W fee-f)

L . F NN | AT
SN 1 DON'T UNDERSTAND

How do we fi cnl%‘!!‘“s

g

\

ey

TO[FINDIT'SIE

ATTHIS POINT.I HA

23

Learning From Data

Recall that the derivative of a function tells you how it is

changing at any given location.
If the derivative is positive, it means it’s going up
If the derivative is negative, it means it’s going down

Strategy:
Start with initial values for w;, wy, b
Take partial derivatives of the loss function with respect tow,, ws, b
Subtract the derivative (also called the gradient) from each
This is known as gradient descent

24

Gradient-Based Optimization

2.0

1.5

1.0

0.5

0.0

—0.5

-10

—1.5

—2.0

j=]

N Global minimum at = = 0. —
\ Since f/(z) = 0, gradient)
| ~\ descent halts here. v i
N e
Id
B - _ i
~ -~
~ —_— — — - —]
For x < 0, we have f'(z) s For = > 0, we have f'(z) >
so we can decrease f b; so we can decrease f by
- moving rightward. moving leftward. B
1,2
- flz)=3m
— f@)==
1 L L L L I 1
-15 —-10 -05 0.0 0.5 1.0 1.5

2.0

Loss
value

—— Learning rate

Starting
point (t=0)

B
Parameter

value

25

Gradient-Based Optimization

A point that obtains the absolute lowest value of f(x) is a global minimum
There may be one global minimum or multiple global minima

It is also possible for there to be local minima that are not globally optimal
It is common in many settings to settle for a value f that is very low but not

necessarily minimal

This local minimum
performs nearly as well as
the global one,

so it is an acceptable
halting point.

2 |Ideally, we would like
to arrive at the global
minimum, but this
might not be possible.
This local minimum performs

poorly and should be avoided.

A
Loss

value

Local
minimum

Global
minimum
>
Parameter
value

26

Gradient-Based Optimization

To minimize f, we would like to find the direction in which f decreases the fastest
It can be shown that the gradient points directly uphill and the negative gradient
directly downhill

We can therefore decrease f by moving in the direction of the negative gradient
For example, for a weight w;

new __ old
w; " =w; " —nNg

where n is the learning rate (how fast you want to move down the gradient),
and g isthe gradient

27

The Backpropagation Algorithm

Learning representations
by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hintonf
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

t Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Phijadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
networks of neurone-like units. The procedure repeatedly adjusts
the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the
net and the desired output vector. As a result of the weight
adjustments, internal ‘hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are captured by the interactions
of these units. The ability to create useful new features distin-
guishes back-propagation from eaclier, simpler methods such as
the perceptron-convergence procedure’.

28

The Backpropagation Algorithm

Our perceptron performs the following computations:
h=w*X|{+wy*xXo+b

— 1
b= 14+exp(—h)

We want to minimize this quantity:

l=(y—p)’

We’ll compute the gradients for each parameter by “backpropagating”
errors through each component of the network

29

The Backpropagation Algorithm

For w1 we need to compute Computations
ol h=wyx X1 +was*xXo+b
owi
. _ 1
To get there we will use the P= Thexp(=h)
chain rule
oL _ al , Op . Oh Loss
dw; — Op T Bk T Bw l=(y—»p)

This is “backprop”

30

The Backpropagation Algorithm

oL _ ol 9p , Oh Computations
Oow; Op Oh = Ow;
h=wy xX{+ws*xXo+b
ol |_ _ 1
a—p - b= 1+exp(—h)

Loss

l=(y—p)?

31

The Backpropagation Algorithm

oL _ ol 9p , Oh Computations
Oow; Op Oh = Ow;
h=wy xX{+ws*xXo+b
al |_
55-—-2*(P—y) P = Treeh)

Loss

l=(y—p)?

32

The Backpropagation Algorithm

oL _ ol 9p . Oh Computations
ow, ~ Op = Oh " Ow

h=w;*X]{+wyxXo+b

ol |_ _

op = 2*P—v) P = Trom(h)
ap|_ Loss
oh | —

l=(y—p)?

The Backpropagation Algorithm

oL _ ol 9p . Oh Computations
ow, ~ Op = Oh " Ow

h=w;*X]{+wyxXo+b

ol

op — 2*(P—v) P = Trom(h)

ap|_ B Loss

l=(y—p)?

The Backpropagation Algorithm

oL _ ol 9p . Oh Computations
ow, ~ Op = Oh " Ow

h=w;*X]{+wyxXo+b

op [2*x(P—Y) P = Trom(h)

ap|_ B Loss

l=(y—p)?

The Backpropagation Algorithm

oL _ ol 9p . Oh Computations
ow, ~ Op = Oh " Ow

h=w;*X]{+wyxXo+b

al | _
Op | 2x(P—y) P = Trem(—h)
ap|_ B Loss

l=(y—p)?

w1 | X1 Putting it all together:

e =2%(p—y)*xpx (1 —p)* X,

36

Gradient Descent with Backprop

For some number of iterations:
Compute the gradient for w ;

old __

Update wi®" = wi® —ng
Repeat until “convergence”

Do this for each weight and bias term.

37

Multilayer
Perceptrons

Perceptron = MLP

We can turn our perceptron model into a multilayer perceptron

Instead of just one linear combination, we are going to take several,
each with a different set of weights

Each linear combination will be followed by a nonlinear activation
Each of these nonlinear features will be fed into the logistic regression
classifier (binary classifier)

All of the weights are learned end-to-end via SGD

MLPs learn a set of nonlinear features directly from data - “feature
engineering” is the hallmark of deep learning approaches

39

Multilayer Perceptrons (MLPs)

Suppose we have the following MLP with 1 hidden layer that has 3 hidden
units:

Each neuron in the hidden layer is going to do exactly the same thing as
before.

40

Multilayer Perceptrons (MLPs)

Computations:
hj = ¢(wij * X1 + wa; * X2 + b;)

3

_ 1
p= 14+exp(—o)

Output layer weight derivatives

oL _ ol . 9Op * do
Owe Op 0Oo Owgj

=(—y)*xp*(1—p)*h;

*

Hidden layer weight derivatives

ol __ ol
Bwlj 3}3

Oh

op do
* Ow1 j

do dh

* *

=@—y)xpx(1—p)xhj*(1-hy)x X,

41

Matrix Notation

Sum notation starts to get unwieldy quickly. We can use matrix notation to

represent each calculation in a more concise way.

XEE

: Pr(y = 1|X1, X3)

X2

B v

w1

Z=WT'X+B

1 w21

2 W22
e

H = |ho
hs3

w31
w3,2

}B:

¢(Z)

42

Notation

As the number of layers grows, the number of matrices grows and we have to

add a superscript to denote the layer. We also have to add a superscript to
denote which training example we are referencing.

Example notation for 1 weightin 1 hidden layer for 1 training example:

, Training example i
/
Layer /]:V_l

k
Jk

Hidden neuron k

Input featurej

43

MLP Terminology

Forward pass = computing probability from input

44

MLP Terminology

Forward pass = computing probability from input

Backward pass = computing derivatives from the output

45

MLP Terminology

Forward pass = computing probability from input
' >

Hidden layers are also
called “dense” layers or
“fully connected” layers

& |
Backward pass = computing derivatives from the output

46

MLPSs

Increasing the number of layers increases the flexibility of the model - but run
the risk of overfitting

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

|
)

A

N
()

AN
)

I
@,

LX)
';i.\

a;
()

0
'/;‘(‘

Lk
vl

LS

&

x @ 3
s 7
N R 7 RESNN
; SR /11'9"‘%‘3\\\\\:
N .- 774 SR -‘f:;;"" 0 }‘:‘x' .

47

Conclusions

Backprop, perceptrons, and MLPs are the building blocks of
neural nets

You’ll get a chance to demonstrate your mastery in Problem Set 1

We will use these concepts for the rest of the semester

48

This is where we left it last class

Coding
Neural Nets

Keras

Keras and Tensorflow B

TensorFlow

CPU

GPU

TPU

Deep learning development:

layers, models, optimizers, losses,

metrics...

Tensor manipulation infrastructure:

tensors, variables, automatic
differentiation, distribution...

Hardware: execution

Keras is a model-level library that provides high-level building blocks for

developing deep learning models

It doesn’t handle low-level operations like matrix and tensor (n-

dimensional matrix) multiplication and differentiation

It uses TensorFlow or Theano or CNTK (Microsoft Cognitive Toolkit)

backends for this
We will be using TensorFlow

It is the most widely adopted, scalable and production ready

Keras can run on both CPUs and GPUs

When running on CPUs, uses Eigen for tensor operations

When running on GPUs, uses the NVIDIA CUDA Deep Neural Network

library (cuDNN)

51

Neural Netwaork \N arkflow

Loss score

52

Generic Feedforward Network

Elements needed:

1. Necessary libraries
2. Dataset splitinto training and test sets (validation as well if you have enough

data)

3. models.Sequential () : defines a linear, or sequential architecture made up
of a set of layers that will stack to create the network

4. layers.Dense () : specifies a fully connected layer

5. model.compile (optimizer, loss, metrics) : specifies how to
execute the training of the network

6. model.fit(train data, train labels, epochs, batch size):
fits the neural net using the training data, runs for a specified number of iterations
(epochs) using batch_size number of training examples at a time

53

Generic Feedforward Network

1 # Import needed packages (not an exhaustive list)
2 import tensorflow as tf

3 from tensorflow import keras

4 from tensorflow.keras import layers

5

6

7

8

Load data (will most likely be more complicated)
(x_train, y_train), (x_test, y_test) = load_data()

9 # Define model architecture

10 model = keras.Sequential([

11 # Layer 1 (Hidden layer, fully connected)

12 layers.Dense(c, activation='activation function'),

13 # Layer 2 (Output layer, fully connected)

14 layers.Dense(d, activation='output activation function')
15 1)

17 # Define how to execute training
18 model.compile(optimizer="'optimizing algorithm',

19 loss='loss function',
20 metrics=['performance metric'])
21

22 # Train the network
23 model.fit(x train, y train, epochs = e, batch size = b)

1 # Import needed packages (not an exhaustive list)
2 import tensorflow as tf

3 from tensorflow import keras

4 from tensorflow.keras import layers

5

6

7

8

Load data (will most likely be more complicated)
(x_train, y train), (x test, y test) = load data()

9 # Define model architecture

10 model = keras.Sequential([

11 # Layer 1 (Hidden layer, fully connected)

12 layers.Dense(c, activation='activation function'),

13 # Layer 2 (Output layer, fully connected)

14 layers.Dense(d, activation='output activation function')

15 1)
Input X 16
l 17 # Define how to execute training
- Layer 18 model.compile(optimizer='optimizing algorithm',
Weights— : ' : !
(Data transformation) 19 loss='loss function',
l Model 20 metrics=['performance metric'])
7 Layer 21
(Data transformation) 22 # Train the network
l 23 model.fit(x_train, y_train, epochs = e, batch_size = b)

ks
update '\ l
(Optimizer]——— [Loss score

|

— B
|

= B

Weight
update

Model

.
(Optimizer|«———Loss score

1 # Import needed packages (not an exhaustive list)

2 import tensorflow as tf

3 from tensorflow import keras

4 from tensorflow.keras import layers

5

6 # Load data (will most likely be more complicated)

7 (x_train, y train), (x test, y test) = load data()

8

9 # Define model architecture

10 model = keras.Sequential([

11 # Layer 1 (Hidden layer, fully connected)

12 layers.Dense(c, activation='activation function'),
13 # Layer 2 (Output layer, fully connected)

14 layers.Dense(d, activation='output activation function')
15 1)

16

17 # Define how to execute training

18 model.compile({optimizer="'optimizing algorithm',

19 loss='loss function',

20 metrics=['performance metric'])

21

22 # Train the network

23 model.fit(x_train, y_train, epochs = e, batch_size = b)

56

1 # Import needed packages (not an exhaustive list)
2 import tensorflow as tf

3 from tensorflow import keras

4 from tensorflow.keras import layers

5

6

7

8

Load data (will most likely be more complicated)
(x_train, y train), (x test, y test) = load data()

9 # Define model architecture

10 model = keras.Sequential([

11 # Layer 1 (Hidden layer, fully connected)

12 layers.Dense(c, activation='activation function'),

13 # Layer 2 (Output layer, fully connected)

14 layers.Dense(d, activation='output activation function')

15 1)
16
l 17 # Define how to execute training
- Layer 18 model.compile(optimizer='optimizing algorithm',
Weights— : ' : !
(Data transformation) 19 loss='loss function',
l Model 20 metrics=['performance metric'])
: Layer 21
(Data transformation) 22 # Train the network
l 23 model.fit(x_train, y_train, epochs = e, batch_size = b)
Predictions ¥ True targets Y

Weight Loss function

update
S l

Optimizer +— Loss score

1 # Import needed packages (not an exhaustive list)
2 import tensorflow as tf

3 from tensorflow import keras

4 from tensorflow.keras import layers

5

6

7

8

Load data (will most likely be more complicated)
(x_train, y train), (x test, y test) = load data()

9 # Define model architecture

10 model = keras.Sequential([

11 # Layer 1 (Hidden layer, fully connected)

12 layers.Dense(c, activation='activation function'),

13 # Layer 2 (Output layer, fully connected)

14 layers.Dense(d, activation='output activation function')

15 1)
16
l 17 # Define how to execute training
Layer 18 model.compile({optimizer="'optimizing algorithm',
-_> (Data transformation) 19 loss='loss function',
l Model 20 metrics=['performance metric'])
-_’ Layer 21
(Data transformation) 22 # Train the network
l 23 model.fit(x_train, y_train, epochs = e, batch_size = b)

-\
(Optimizer|———[Loss scors

Generic Feedforward Network

train_data: training examples (matrix of feature vectors; X, ain)
train_labels: training labels (Y;y.in)
test_data: test examples used to measure performance of network (X,est)
test_labels: test set labels (Yieqt)
Optimizing algorithms: rmsprop, sgd, adagrad, adam, etc.
Loss function options: mse, mae, categorical_crossentropy, etc.
Performance measure options: accuracy, mae, etc.
Here:

¢ = the number of hidden units (neurons) in a hidden layer

d = the number of units (neurons) in the output layer

e = the number of epochs (iterations) over entire training data set

b = the batch size (how many training examples to optimize at once)
59

MLPs In
Python/Keras

MNIST Data Example

The MNIST data set includes handwritten
digits with corresponding labels

Training set: 60,000 images of handwritten

digits and corresponding labels
Each digit is represented as a 28 x 28
matrix of grayscale values 0 - 255
The entire training setis stored in a
3D tensor of shape (60000, 28, 28)
The corresponding image values are
stored as a 1D tensor of values0-9

Testing set: 10,000 images with the same
set up as the training set

label =5

M

label = 2

5

label = 3

N B

m cee
"
<L
S

label = 4 label =1

L
~

o
o
o
Il

w

label =1

3

label = 6

Training Data

label = 9

-~

o
o
o
I

IS

X,

label =1

I
o
_09
©

1

N
>
4

60,000 images

[28 pixels

28 pixels

61

http://yann.lecun.com/exdb/mnist/

MNIST Data Example

Data wrangling

We’ll get into RGB images later, but for grayscale images, we need to first transform the matrix of

values into a vector of values, and then normalize them to be between 0 and 1. It is not strictly

necessary to normalize your inputs, but smaller numbers help speed up training and avoid

getting stuck in local minima. This also ensures the gradients don’t “explode” or “vanish”
Reshape each image from a 28 x 28 matrix of grayscale values 0 - 255 to a vector of length
28*28 =784 of values 0 - 1 (divide each by 255)

We now have 10 classes (categories; the digits 0-9)
We need to have multiclass labels that tell the network which digit the example is
Reshape each corresponding image label to a vector of length 10 of values O or 1
Example: the digit 3 would be represented as [0, 0,0, 1,0, 0,0, 0, 0, 0]
You can think of this as “dummy coding” the labels

62

Activation and Loss Function Choices

Task

Last-layer activation

Loss function

between 0 and 1

Binary classification sigmoid Binary cross-entropy
Multiclass, single-label softmax Categorical cross-entropy
classification

Multiclass, multilabel sigmoid Binary cross-entropy
classification

Regression to arbitrary None Mean square error (MSE)
values

Regression to values sigmoid MSE or binary cross-

entropy

63

Softmax function softmax(2); = 5=, e

Softmax units are used as outputs when predicting a discrete variable y with j possible values

In this setting, which can be seen as a generalization of the Bernoulli distribution, we need to
produce a vector ¥ with 9; = P(y = i|x)

We require that each ¥: lie in the [0, 1] interval and that the entire vector sums to 1
We first compute 2 = wlz + b asusual
Here, 2 = log[P(y = i|z)] represents an unnormalized log probability for class i

The softmax function then exponentiates and normalizes z to obtain¥

64

Categorical cross-entropy

In this case we want to maximize

log[P(y = i; z)] = log[softmax(z) — log Z exp(z;)

The first term shows that the input always has a direct contribution to

the loss function

Because l"’g;e”’p(’zﬂ') ~Ma%i%i the negative log-likelihood loss function

always strongly penalizes the most active incorrect prediction

65

MNIST Data Example

Network Architecture

Let’s start with 2 layers:
Hidden layer will have 512 hidden units and the relu activation function

Output layer with 10 units (one for each possible digit) and the softmax activation function (this
produces a vector of length 10, where each element is a probability between 0 and 1 of the image
being classified as that digit)

Example: [0, 0.3,0,0,0,0,0,0.7, 0, 0] - the highest probability corresponds to a label of 7, so the
network would classify thisimageasa 7

rmsprop optimization algorithm
categorical_crossentropy loss function
accuracy performance measure (the proportion of times the correct class is chosen)

66

MNIST Data Example

Colab link

cO & Lablipynb ¢
File Edit View Insert Runtime Tools Help

Step 1 _ [I’ Open in playground]

¢ Lablipynb i+
CO PY
File Edit View Insert Runtime Tools Help

Step2 _ + Code + Text # Copyto Drive]

https://colab.research.google.com/drive/1ocFr7rgT-_mmr1VY_vWxC-b3PSvwVzBu?usp=sharing

	Slide 1: Data Science Initiative for Africa (DSI-A) - Deep Learning Lecture 2 MLPs, Backpropagation, and coding neural networks in Python Santiago Romero-Brufau Harvard T.H. Chan School of Public Health Spring 2
	Slide 2: Administrivia
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Deep learning glossaries
	Slide 8: First, recap from last class
	Slide 9: First, recap from last class
	Slide 10: What is a neural net? A neural net is composed of 3 things:
	Slide 11
	Slide 12
	Slide 13: Perceptrons
	Slide 14: Perceptrons
	Slide 15: Predictions
	Slide 16: Predictions
	Slide 17: Predictions
	Slide 18: Predictions
	Slide 19: Predictions
	Slide 20: Performance
	Slide 21: Learning From Data
	Slide 22: Learning From Data
	Slide 23: Learning From Data
	Slide 24: Learning From Data
	Slide 25: Gradient-Based Optimization
	Slide 26: Gradient-Based Optimization
	Slide 27: Gradient-Based Optimization
	Slide 28: The Backpropagation Algorithm
	Slide 29: The Backpropagation Algorithm
	Slide 30: The Backpropagation Algorithm
	Slide 31: The Backpropagation Algorithm
	Slide 32: The Backpropagation Algorithm
	Slide 33: The Backpropagation Algorithm
	Slide 34: The Backpropagation Algorithm
	Slide 35: The Backpropagation Algorithm
	Slide 36: The Backpropagation Algorithm
	Slide 37: Gradient Descent with Backprop
	Slide 38
	Slide 39: Perceptron MLP
	Slide 40: Multilayer Perceptrons (MLPs)
	Slide 41: Multilayer Perceptrons (MLPs)
	Slide 42: Matrix Notation
	Slide 43: Notation
	Slide 44: MLP Terminology
	Slide 45: MLP Terminology
	Slide 46: MLP Terminology
	Slide 47: MLPs
	Slide 48: Conclusions
	Slide 49
	Slide 50
	Slide 51: Keras and Tensorflow
	Slide 52: Neural Network Workflow
	Slide 53: Generic Feedforward Network
	Slide 54: Generic Feedforward Network
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Generic Feedforward Network
	Slide 60
	Slide 61: MNIST Data Example
	Slide 62: MNIST Data Example
	Slide 63: Activation and Loss Function Choices
	Slide 64: Softmax function
	Slide 65: Categorical cross-entropy
	Slide 66: MNIST Data Example
	Slide 67: MNIST Data Example

