
Data Science Initiative for

Africa (DSI-A) - Deep Learning

Lecture 2
MLPs, Backpropagation, and coding neural

networks in Python

Santiago Romero-Brufau

Harvard T.H. Chan School of Public Health

Spring 2

Administrivia

- ChatGPT is a great tool to help debug your code, give you ideas about
things to try, etc. https://chat.openai.com/

- It doesn’t get everything right, but it’s very useful.
- The paid version is useful, but somewhat expensive ($20 (R358))

- Form: https://forms.gle/RZHWxhbBBMes7yPx8

2

https://chat.openai.com/
https://forms.gle/RZHWxhbBBMes7yPx8

3

4

5

6

Deep learning glossaries

1. Google
2. WildML

7

https://developers.google.com/machine-learning/glossary
http://www.wildml.com/deep-learning-glossary/

First, recap from last class

Conceptually, a NN has three components.

In each node we just make simple multiplications
and sums, and multiply it by an activation function

8

First, recap from last class

Conceptually, a NN has three components.

- The network structure
- A loss function
- An optimizer

In each node we just make simple multiplications
and sums, and multiply it by an activation function

9

What is a neural net?

A neural net is composed of 3 things:

The network
structure

10

The loss function The optimizer

https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f

https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6

11

Perceptrons

12

Perceptrons

◎ Let’s put this all together
◎ Our first network will be a single neuron that will learn a simple function

Observations

13

X1 X2 y

0 0 0

0 1 1

1 0 1

1 1 1

2

Perceptrons

◎ How do we make a prediction for each observation?

Observations

14

X1 X2 y

0 0 0

0 1 1

1 0 1

1 1 1w1 w2 b

1 -1 -0.5

Assume the following values:

22

Predictions

◎ For the first observation,
◎ First compute the weighted sum:

15

X1 X2 y

0 0 0

0 1 1

1 0 1

1 1 1w1 w2 b

1 -1 -0.5

Assume the following values:

Observations

Predictions

◎ For the first observation,
◎ First compute the weighted sum: Transform to a probability:

16

w1 w2 b

1 -1 -0.5

Assume the following values: *Note we are doing binary
classification so we use the
sigmoid activation function to
calculate p

Predictions

◎ For the first observation,
◎ First compute the weighted sum: Transform to a probability:

17

w1 w2 b

1 -1 -0.5

Assume the following values:
Round to get prediction:

Predictions

18

X1 X2 y h p

0 0 0 -0.5 0.38 0

0 1 1

1 0 1

1 1 1

w1 w2 b

1 -1 -0.5

Assume the following values:

Complete the table:

Predictions

19

X1 X2 y h p

0 0 0 -0.5 0.38 0

0 1 1 -1.5 0.18 0

1 0 1 0.5 0.38 0

1 1 1 -0.5 0.38 0

w1 w2 b

1 -1 -0.5

Assume the following values:

Complete the table:

Performance

◎ Our network isn’t so great
◎ How do we make it better?
◎ What does better mean?

○ Need to define a measure of performance
○ There are many ways

◎ Let’s begin with squared error:
◎ We need to find values for that make this error as small as

possible.
◎ We need to learn values for such that the difference between

the predicted and actual values is as small as possible.

20

Learning From Data

How do we find the best values for ?

21

Learning From Data

How do we find the best values for ?

22

Learning From Data

How do we find the best values for ?

23

Learning From Data

◎ Recall that the derivative of a function tells you how it is
changing at any given location.
○ If the derivative is positive, it means it’s going up
○ If the derivative is negative, it means it’s going down

◎ Strategy:
○ Start with initial values for
○ Take partial derivatives of the loss function with respect to
○ Subtract the derivative (also called the gradient) from each
○ This is known as gradient descent

24

Gradient-Based Optimization

25

Gradient-Based Optimization

◎ A point that obtains the absolute lowest value of f(x) is a global minimum
◎ There may be one global minimum or multiple global minima
◎ It is also possible for there to be local minima that are not globally optimal
◎ It is common in many settings to settle for a value f that is very low but not

necessarily minimal

26

Gradient-Based Optimization

◎ To minimize f, we would like to find the direction in which f decreases the fastest
◎ It can be shown that the gradient points directly uphill and the negative gradient

directly downhill
◎ We can therefore decrease f by moving in the direction of the negative gradient
◎ For example, for a weight

where is the learning rate (how fast you want to move down the gradient),
and is the gradient

27

The Backpropagation Algorithm

28

The Backpropagation Algorithm

◎ Our perceptron performs the following computations:

◎ We want to minimize this quantity:

◎ We’ll compute the gradients for each parameter by “backpropagating”
errors through each component of the network

29

The Backpropagation Algorithm

For we need to compute

To get there we will use the
chain rule

This is “backprop”

Computations

Loss

30

The Backpropagation Algorithm

Computations

Loss

31

The Backpropagation Algorithm

Computations

Loss

32

The Backpropagation Algorithm

Computations

Loss

33

The Backpropagation Algorithm

Computations

Loss

34

The Backpropagation Algorithm

Computations

Loss

35

The Backpropagation Algorithm

Computations

Loss

36

Putting it all together:

Gradient Descent with Backprop

For some number of iterations:

1. Compute the gradient for
2. Update
3. Repeat until “convergence”

Do this for each weight and bias term.

37

i

38

Multilayer
Perceptrons

Perceptron MLP

We can turn our perceptron model into a multilayer perceptron

◎ Instead of just one linear combination, we are going to take several,
each with a different set of weights

◎ Each linear combination will be followed by a nonlinear activation
◎ Each of these nonlinear features will be fed into the logistic regression

classifier (binary classifier)
◎ All of the weights are learned end-to-end via SGD

MLPs learn a set of nonlinear features directly from data - “feature
engineering” is the hallmark of deep learning approaches

39

Multilayer Perceptrons (MLPs)

Suppose we have the following MLP with 1 hidden layer that has 3 hidden
units:

Each neuron in the hidden layer is going to do exactly the same thing as
before.

40

Multilayer Perceptrons (MLPs)

Computations:

Output layer weight derivatives Hidden layer weight derivatives

41

*If we use a sigmoid activation function

Matrix Notation

Sum notation starts to get unwieldy quickly. We can use matrix notation to
represent each calculation in a more concise way.

42

Notation

As the number of layers grows, the number of matrices grows and we have to
add a superscript to denote the layer. We also have to add a superscript to
denote which training example we are referencing.

Example notation for 1 weight in 1 hidden layer for 1 training example:

43

Layer l
Training example i

Hidden neuron k

Input feature j

MLP Terminology

Forward pass = computing probability from input

44

MLP Terminology

Forward pass = computing probability from input

Backward pass = computing derivatives from the output

45

MLP Terminology

Forward pass = computing probability from input

Backward pass = computing derivatives from the output

46

Hidden layers are also
called “dense” layers or
“fully connected” layers

MLPs

Increasing the number of layers increases the flexibility of the model - but run
the risk of overfitting

47

Conclusions

◎ Backprop, perceptrons, and MLPs are the building blocks of
neural nets

◎ You’ll get a chance to demonstrate your mastery in Problem Set 1

◎ We will use these concepts for the rest of the semester

48

This is where we left it last class

50

Coding
Neural Nets

Keras and Tensorflow

◎ Keras is a model-level library that provides high-level building blocks for
developing deep learning models

◎ It doesn’t handle low-level operations like matrix and tensor (n-
dimensional matrix) multiplication and differentiation
○ It uses TensorFlow or Theano or CNTK (Microsoft Cognitive Toolkit)

backends for this
○ We will be using TensorFlow

◉ It is the most widely adopted, scalable and production ready
◎ Keras can run on both CPUs and GPUs

○ When running on CPUs, uses Eigen for tensor operations
○ When running on GPUs, uses the NVIDIA CUDA Deep Neural Network

library (cuDNN)
51

Neural Network Workflow

52

Generic Feedforward Network

Elements needed:

1. Necessary libraries
2. Dataset split into training and test sets (validation as well if you have enough

data)
3. models.Sequential(): defines a linear, or sequential architecture made up

of a set of layers that will stack to create the network
4. layers.Dense(): specifies a fully connected layer
5. model.compile(optimizer, loss, metrics): specifies how to

execute the training of the network
6. model.fit(train_data, train_labels, epochs, batch_size):

fits the neural net using the training data, runs for a specified number of iterations
(epochs) using batch_size number of training examples at a time

53

54

Generic Feedforward Network

55

56

57

58

Generic Feedforward Network

train_data: training examples (matrix of feature vectors; Xtrain)

train_labels: training labels (ytrain)

test_data: test examples used to measure performance of network (Xtest)

test_labels: test set labels (ytest)

Optimizing algorithms: rmsprop, sgd, adagrad, adam, etc.

Loss function options: mse, mae, categorical_crossentropy, etc.

Performance measure options: accuracy, mae, etc.

Here:

c = the number of hidden units (neurons) in a hidden layer

d = the number of units (neurons) in the output layer

e = the number of epochs (iterations) over entire training data set

b = the batch size (how many training examples to optimize at once)
59

60

MLPs in
Python/Keras

MNIST Data Example

◎ The MNIST data set includes handwritten
digits with corresponding labels

◎ Training set: 60,000 images of handwritten
digits and corresponding labels
○ Each digit is represented as a 28 x 28

matrix of grayscale values 0 - 255
○ The entire training set is stored in a

3D tensor of shape (60000, 28, 28)
○ The corresponding image values are

stored as a 1D tensor of values 0 - 9

◎ Testing set: 10,000 images with the same
set up as the training set

61

28 pixels

28 pixels

60,000 images

...

Training Data

http://yann.lecun.com/exdb/mnist/

MNIST Data Example

Data wrangling

◎ We’ll get into RGB images later, but for grayscale images, we need to first transform the matrix of
values into a vector of values, and then normalize them to be between 0 and 1. It is not strictly
necessary to normalize your inputs, but smaller numbers help speed up training and avoid
getting stuck in local minima. This also ensures the gradients don’t “explode” or “vanish”
○ Reshape each image from a 28 x 28 matrix of grayscale values 0 - 255 to a vector of length

28*28 = 784 of values 0 - 1 (divide each by 255)

◎ We now have 10 classes (categories; the digits 0-9)
○ We need to have multiclass labels that tell the network which digit the example is
○ Reshape each corresponding image label to a vector of length 10 of values 0 or 1
○ Example: the digit 3 would be represented as [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
○ You can think of this as “dummy coding” the labels

62

Activation and Loss Function Choices

63

Task Last-layer activation Loss function

Binary classification sigmoid Binary cross-entropy

Multiclass, single-label

classification

softmax Categorical cross-entropy

Multiclass, multilabel

classification

sigmoid Binary cross-entropy

Regression to arbitrary

values

None Mean square error (MSE)

Regression to values

between 0 and 1

sigmoid MSE or binary cross-

entropy

Softmax function

◎ Softmax units are used as outputs when predicting a discrete variable y with j possible values

◎ In this setting, which can be seen as a generalization of the Bernoulli distribution, we need to
produce a vector with

◎ We require that each lie in the [0, 1] interval and that the entire vector sums to 1

◎ We first compute as usual

◎ Here, represents an unnormalized log probability for class i

◎ The softmax function then exponentiates and normalizes z to obtain

64

Categorical cross-entropy

◎ In this case we want to maximize

◎ The first term shows that the input always has a direct contribution to

the loss function

◎ Because , the negative log-likelihood loss function

always strongly penalizes the most active incorrect prediction

65

MNIST Data Example

Network Architecture

◎ Let’s start with 2 layers:
○ Hidden layer will have 512 hidden units and the relu activation function

○ Output layer with 10 units (one for each possible digit) and the softmax activation function (this
produces a vector of length 10, where each element is a probability between 0 and 1 of the image
being classified as that digit)

○ Example: [0, 0.3, 0, 0, 0, 0, 0, 0.7, 0, 0] - the highest probability corresponds to a label of 7, so the
network would classify this image as a 7

○ rmsprop optimization algorithm
○ categorical_crossentropy loss function
○ accuracy performance measure (the proportion of times the correct class is chosen)

66

MNIST Data Example

67

Colab link

Step 1

Step 2

https://colab.research.google.com/drive/1ocFr7rgT-_mmr1VY_vWxC-b3PSvwVzBu?usp=sharing

	Slide 1: Data Science Initiative for Africa (DSI-A) - Deep Learning Lecture 2 MLPs, Backpropagation, and coding neural networks in Python Santiago Romero-Brufau Harvard T.H. Chan School of Public Health Spring 2
	Slide 2: Administrivia
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Deep learning glossaries
	Slide 8: First, recap from last class
	Slide 9: First, recap from last class
	Slide 10: What is a neural net? A neural net is composed of 3 things:
	Slide 11
	Slide 12
	Slide 13: Perceptrons
	Slide 14: Perceptrons
	Slide 15: Predictions
	Slide 16: Predictions
	Slide 17: Predictions
	Slide 18: Predictions
	Slide 19: Predictions
	Slide 20: Performance
	Slide 21: Learning From Data
	Slide 22: Learning From Data
	Slide 23: Learning From Data
	Slide 24: Learning From Data
	Slide 25: Gradient-Based Optimization
	Slide 26: Gradient-Based Optimization
	Slide 27: Gradient-Based Optimization
	Slide 28: The Backpropagation Algorithm
	Slide 29: The Backpropagation Algorithm
	Slide 30: The Backpropagation Algorithm
	Slide 31: The Backpropagation Algorithm
	Slide 32: The Backpropagation Algorithm
	Slide 33: The Backpropagation Algorithm
	Slide 34: The Backpropagation Algorithm
	Slide 35: The Backpropagation Algorithm
	Slide 36: The Backpropagation Algorithm
	Slide 37: Gradient Descent with Backprop
	Slide 38
	Slide 39: Perceptron MLP
	Slide 40: Multilayer Perceptrons (MLPs)
	Slide 41: Multilayer Perceptrons (MLPs)
	Slide 42: Matrix Notation
	Slide 43: Notation
	Slide 44: MLP Terminology
	Slide 45: MLP Terminology
	Slide 46: MLP Terminology
	Slide 47: MLPs
	Slide 48: Conclusions
	Slide 49
	Slide 50
	Slide 51: Keras and Tensorflow
	Slide 52: Neural Network Workflow
	Slide 53: Generic Feedforward Network
	Slide 54: Generic Feedforward Network
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Generic Feedforward Network
	Slide 60
	Slide 61: MNIST Data Example
	Slide 62: MNIST Data Example
	Slide 63: Activation and Loss Function Choices
	Slide 64: Softmax function
	Slide 65: Categorical cross-entropy
	Slide 66: MNIST Data Example
	Slide 67: MNIST Data Example

